Multi-Step-Ahead Tool State Monitoring Using Clustering Feature-Based Recurrent Fuzzy Neural Networks
نویسندگان
چکیده
Reliable and precise multi-step-ahead tool wear state prediction is significant to modern industries for maintaining part quality reducing cost. This study proposes a Clustering Feature-based Recurrent Fuzzy Neural Network (CFRFNN) monitoring remaining useful life (RUL) based on K-means Clustering, (RFNN) Genetic Algorithm (GA). method utilized realize definition input signal division, which reduces the dependence prior knowledge of degree improves accuracy. Then, an enhanced RFNN model designed applied clustered features predict state. The optimized GA technique helpful adaptive optimization parameters, significantly convergence rate experiments are performed validate superiority CFRFNN, results demonstrate that proposed network could reasonably configure complex non-stationary process have high accuracy
منابع مشابه
Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملOne step ahead prediction using Fuzzy Boolean Neural Networks
Time series prediction is a problem with a wide range of applications, including energy systems planning, currency forecasting, stock exchange operations or traffic prediction. Accordingly, a number of different prediction approaches have been proposed such as linear models, Feedforward Neural network models, Recurrent Neural networks or Fuzzy Neural Models. In this paper one presents a predict...
متن کاملmulti-step-ahead prediction of stock price using a new architecture of neural networks
modelling and forecasting stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. this nonlinearity affects the efficiency of the price characteristics. using an artificial neural network (ann) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملImage Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کاملAuthorship Clustering using Multi-headed Recurrent Neural Networks
A recurrent neural network that has been trained to separately model the language of several documents by unknown authors is used to measure similarity between the documents. It is able to find clues of common authorship even when the documents are very short and about disparate topics. While it is easy to make statistically significant predictions regarding authorship, it is difficult to group...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3104668